Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 130(9): 092701, 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36930937

ABSTRACT

The ^{18}O(α,γ)^{22}Ne reaction is critical for AGB star nucleosynthesis due to its connection to the abundances of several key isotopes, such as ^{21}Ne and ^{22}Ne. However, the ambiguous resonance energy and spin-parity of the dominant 470 keV resonance leads to substantial uncertainty in the ^{18}O(α,γ)^{22}Ne reaction rate for the temperature of interest. We have measured the resonance energies and strengths of the low-energy resonances in ^{18}O(α,γ)^{22}Ne at the Jinping Underground Nuclear Astrophysics experimental facility (JUNA) with improved precision. The key 470 keV resonance energy has been measured to be E_{α}=474.0±1.1 keV, with such high precision achieved for the first time. The spin-parity of this resonance state is determined to be 1^{-}, removing discrepancies in the resonance strengths in earlier studies. The results significantly improve the precision of the ^{18}O(α,γ)^{22}Ne reaction rates by up to about 10 times compared with the previous data at typical AGB temperatures of 0.1-0.3 GK. We demonstrate that such improvement leads to precise ^{21}Ne abundance predictions, with an impact on probing the origin of meteoritic stardust SiC grains from AGB stars.

2.
Nature ; 462(7276): 1028-31, 2009 Dec 24.
Article in English | MEDLINE | ID: mdl-20033041

ABSTRACT

Stars in globular clusters are generally believed to have all formed at the same time, early in the Galaxy's history. 'Blue stragglers' are stars massive enough that they should have evolved into white dwarfs long ago. Two possible mechanisms have been proposed for their formation: mass transfer between binary companions and stellar mergers resulting from direct collisions between two stars. Recently the binary explanation was claimed to be dominant. Here we report that there are two distinct parallel sequences of blue stragglers in M 30. This globular cluster is thought to have undergone 'core collapse', during which both the collision rate and the mass transfer activity in binary systems would have been enhanced. We suggest that the two observed sequences are a consequence of cluster core collapse, with the bluer population arising from direct stellar collisions and the redder one arising from the evolution of close binaries that are probably still experiencing an active phase of mass transfer.

SELECTION OF CITATIONS
SEARCH DETAIL
...